Projekt Zivis - hat jemand Spanischkenntnisse ?

pprr

Grand Admiral Special
Mitglied seit
10.07.2005
Beiträge
4.349
Renomée
23
Standort
Linz/Österreich
Hi

Weiß jemand genaueres über das neue Projekt "Zivis"? Die Seite ist auf Spanisch und somit etwas schwer verständlich für mich. Per Google habe ich bis jetzt nur mal erfahren, dass es bei diesem Projekt angeblich um Berechnungen der Partikelbahnen im Fusionsreaktor geht.

Der Wissenschaftliche Hintergrund ist mir noch nicht ganz klar, Hier wird vermutet, dass es um die Erforschung von Sauberen Energien durch Fusion geht *noahnung*

Falls jemand genaueres weiß, bitte posten
 
Hi,

versuch die seite mal über google zu Übersetzen oder mit dem FireFox Add-on Translator. bei mir klappt es einwandfrei :)

gruß, zeraph
 
Danke für den Tipp, die Übersetzung funktioniert einigermaßen, aber über den Wissenschaftlichen Hintergrund habe ich trotzdem noch nichts brauchbares gefunden.

Hier hab ich einen Link zu einem PDF gefunden aber auch aus diesem kann ich nichts sinnvolles hervorheben, so wie ich das bis jetzt verstanden habe geht es in erster Linie mal darum so viele Computer wie möglich in das Projekt zu integrieren, wofür die berechneten Ergebnisse verwendet werden verstehe ich aber momentan noch nicht *noahnung*
Bin ich zu blöd, oder habe ich was übersehen ???

Hier jedenfalls ein Auszug aus dem PDF


ZIVIS is an initiative which aims to establish in
Zaragoza (Spain) the first “city-wide supercomputer”.
The objective is to integrate as much computers as
possible to form a virtual computing platform in the
metropolitan area of Zaragoza (650.000 inhabitants).
This is achieved through volunteer computing, namely
using an adapted version of the open source software
BOINC.
The project is run by the Zaragoza city council [2] and
the Institute for Biocomputation and Physics of
Complex Systems [3] of the University of Zaragoza,
which will provide the scientific applications to be run
on the platform.


In order to involve the highest number of citizens in
the project, the application chosen to run on the ZIVIS
infrastructure had to be viewed as interesting and
worthwhile by the general public. This is the case of
research in alternative energy sources, like fusion,
which is seen as the future energy source. BIFI has a
well-known experience in fusion research; for that
reason the code selected as pilot application for the
ZIVIS project was ISDEP [4].
ISDEP (“Integrator of Stochastic Differential
Equations in Plasmas”) is a fusion plasma application
programmed and highly optimized in C language
which calculates the trajectories of the particles inside
a fusion device. This environment is read from several
input files which includes the geometry of the vacuum
chamber of the fusion device, the magnetic field
created by the coils, and the electrostatic and particles
(electrons and ions) density profiles. As a result, the
same calculus core can be used for a stellarator fusion
device or for a tokamak one.
The magnetic field is read from a grid (see Guasp et
al.[5]) and interpolated in simulation time. The
application calculates the next position of each particle
along its trajectory as a function of the previous one,
taking into consideration the environment and other
initial parameters of the particles. These parameters
include the possibility of a collision between particles
during simulation and the electrical and magnetic fields
inside the device. Those effects can be independently
"switched off or on" by the user in order to assess its
influence in particle evolution.
Actually, the calculation of the positions of the
different particles of each trajectory during the
simulation implies the solution of a set of Stochastic
Differential Equations which governs the evolution of
the plasma. The numerical algorithm used for solving
them (by Kloeden and Pearson [6]) is of the Runge-
Kutta type, upgraded so that it can deal with a gaussian
noise (the one caused by the collisions of the particles
with ions and electrons inside the device). At the end,
the core calculates a great number of particles
trajectories (typically about one million) and obtains
averages of the relevant magnitudes, such as densities,
temperatures and fluxes of particles.
The generation of workunits for ISDEP will be
differentiated in two phases. In a first round (first four
weeks of the production period) clients will calculate a
determinate number of trajectories and will take
measurements over them, essentially sampling
positions using a given interval of time. They will also
save a complete trajectory for a posterior visualization
during the public demostration event. During the
second phase (fifth week), only sampled data will be
calculated.
 
Zurück
Oben Unten